addon

SFP-H25G-CU5M-AO

Cisco[®] SFP-H25G-CU5M Compatible TAA Compliant 25GBase-CU SFP28 Direct Attach Cable (Passive Twinax, 5m)

Features

- Up to 25.78125 Gbps data rate
- Hot-pluggable SFP 20PIN footprint
- Improved Pluggable Form Factor (IPF) compliant for enhanced EMI/EMC performance
- Compatible to SFP28 MSA
- Compatible to SFF-8402 and SFF-8432
- 26AWG Wire Gauge
- Temperature Range: 0~70°C
- RoHS Compliant

Application

• 25GE Ethernet

Product Description

This is a Cisco[®] SFP-H25G-CU5M compatible 25GBase-CU SFP28 to SFP28 direct attach cable that operates over passive copper with a maximum reach of 5.0m (16.4ft). It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. This direct attach cable is TAA (Trade Agreements Act) compliant, and is built to comply with MSA (Multi-Source Agreement) standards. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's direct attach cables are RoHS compliant and lead free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

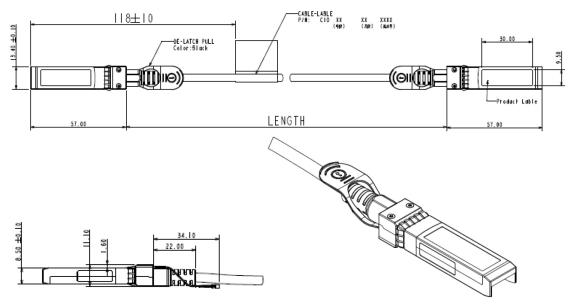
Absolute Maximum Ratings

Parameter	Min.	Тур.	Max.	Unit
Storage Temperature	-40		85	°C
Supply Voltage	3.14	3.3	3.47	V
Operating Case Temperature	0		70	°C
Data Rate Per Lane	1		25.78	Gb/s

Recommended Operating Conditions

Parameter	Sym.	Min.	Тур.	Max.	Unit	Note
Differential Impedance	R _{IN,P-P}	90		110	Ω	
Insertion Loss	SDD21			22.48	dB	At 12.8906 GHz
Differential Return Loss	SDD11			See 1	dB	At 0.05 to 4.1 GHz
	SDD22			See 2	dB	At 4.1 to 19 GHz
Common-mode to Common-	SCC11				dB	At 0.2 to 19 GHz
mode output return loss	SCC22					
Differential to common- mode return loss	SCD11			See 3	dB	At 0.01 to 12.89 GHz
	SCD22			See 4		At 12.89 to 19 GHz
Differential to common	SCD21			10	dB	At 0.01 to 12.89 GHz
Mode Conversion Loss				See 5		At 12.89 to 15.7 GHz
				6.3		At 15.7 to 19 GHz
Channel Operating Margin	СОМ	3			dB	

Notes:


- 1. Reflection Coefficient given by equation SDD11(dB) < 16.5 2 × SQRT(f), with f in GHz
- 2. Reflection Coefficient given by equation SDD11(dB) < $10.66 14 \times \log 10(f/5.5)$, with f in GHz
- 3. Reflection Coefficient given by equation SCD11(dB) < 22 (20/25.78)*f, with f in GHz
- 4. Reflection Coefficient given by equation SCD11(dB) < 15 (6/25.78)*f, with f in GHz
- 5. Reflection Coefficient given by equation SCD21(dB) < 27 (29/22)*f, with f in GHz

Pin	Symbol	Name/Descriptions	Ref.		
1	VeeT	Transmitter Ground (Common with Receiver Ground)	1		
2	TX Fault	Transmitter Fault.			
3	TX Disable	Transmitter Disable. Laser output disabled on high or open.	2		
4	MOD DEF (2)	Module Definition 2. Data line for Serial ID.	3		
5	MOD_DEF (1)	Module Definition 1. Clock line for Serial ID.	3		
6	MOD_DEF (0)	Module Definition 0. Grounded within the module.	3		
7	Rate Select	No connection required.			
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	4		
9	VeeR	Receiver Ground (Common with Transmitter Ground)	1		
10	VeeR	Receiver Ground (Common with Transmitter Ground)	1		
11	VeeR	Receiver Ground (Common with Transmitter Ground)	1		
12	RD-	Receiver Inverted DATA out. AC Coupled.			
13	RD+	Receiver Non-inverted DATA out. AC Coupled.			
14	VeeR	Receiver Ground (Common with Transmitter Ground)	1		
15	VccR	Receiver Power Supply.			
16	VccT	Transmitter Power Supply.			
17	VeeT	Transmitter Ground (Common with Receiver Ground)			
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.			
19	TD-	Transmitter Inverted DATA in. AC Coupled.			
20	VeeT	Transmitter Ground (Common with Receiver Ground)	1		

Notes:

- 1. Circuit ground is internally isolated from chassis ground.
- 2. Laser output disabled on TX Disable >2.0V or open, enabled on TX Disable <0.8V.
- Should be pulled up with 4.7k-10kohms on host board to a voltage between 2.0V and 3.6V. MOD_DEF (0) pulls line low to indicate module is plugged in.
- 4. LOS is open collector output. Should be pulled up with 4.7k-10kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Mechanical Specification

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com Telephone: +1 877.292.1701 Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com Telephone: +44 1285 842070